Generalized profiling estimation for global and adaptive penalized spline smoothing

نویسندگان

  • Jiguo Cao
  • James O. Ramsay
چکیده

Wepropose the generalized profilingmethod to estimate themultiple regression functions in the framework of penalized spline smoothing, where the regression functions and the smoothing parameter are estimated in two nested levels of optimization. The corresponding gradients and Hessian matrices are worked out analytically, using the Implicit Function Theorem if necessary, which leads to fast and stable computation. Our main contribution is developing the modified delta method to estimate the variances of the regression functions, which include the uncertainty of the smoothing parameter estimates. We further develop adaptive penalized spline smoothing to estimate spatially heterogeneous regression functions, where the smoothing parameter is a function that changes along with the curvature of regression functions. The simulations and application show that the generalized profiling method leads to good estimates for the regression functions and their variances. Crown Copyright© 2008 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Fast Adaptive Penalized Splines

This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coefficients following a normal distribution, which by itself has a smooth structure ove...

متن کامل

Modelling and smoothing parameter estimation with multiple quadratic penalties

Penalized likelihood methods provide a range of practical modelling tools, including spline smoothing, generalized additive models and variants of ridge regression. Selecting the correct weights for penalties is a critical part of using these methods and in the single penalty case the analyst has several well founded techniques to choose from. However, many modelling problems suggest a formulat...

متن کامل

Estimating penalized spline regressions: Theory and application to economics

In this paper we give a brief survey of penalized spline smoothing. Penalized spline smoothing is a general non-parametric estimation technique which allows to fit smooth but else unspecified functions to empirical data. While penalized spline regressions are quite popular in natural sciences only few applications can be found in economics. We present an example demonstrating how this non-param...

متن کامل

Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models

Single-index model is a potentially tool for multivariate nonparametric regression, generalizes both the generalized linear models(GLM) and the missing-link function problem in GLM. In this paper, we extend Cook’s local influence analysis to the penalized Gaussian likelihood estimator based on P-spline for the partially linear single-index model. Some influence measures, based on the minor pert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009